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1 Introduction

A series containing non-negative integral powers of a variable x,

c0 + c1x+ c2x
2 + · · ·+ cnx

n + · · · =
∞∑
n=0

cnx
n

where cn are constants depending on n, is called a power series in x. This series is just a

particular case of the more general form,

c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · =
∞∑
n=0

cn(x− a)n

which is called a power series in x− a. These two series converge to c0 when x = 0 and

x = a, respectively.

EXAMPLE

The power series

1 + x+ x2 + · · ·+ xn + · · · =
∞∑
n=0

xn

is a geometric series with r = x. Thus, the series converges for |r| = |x| < 1. That

is, for −1 < x < 1.

2 Interval of Convergence

The set of all real numbers x for which a power series converges is said to be its interval

of convergence. A power series in x− a may converge

• on a finite interval centered at a:

(a− r, a+ r), [a− r, a+ r), (a− r, a+ r] or [a− r, a+ r];

• on the infinite interval (−∞,∞); or

• at the single point x = a.

In the respective cases, we say that the radius of convergence is

r, ∞ or 0.
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0 a − r a a + r
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convergence
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convergence
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( )
· · · · · · · · · · · · · · · · · · · · ·

For example, for the case (a− r, a+ r):

EXAMPLE

Find the interval of convergence for
∞∑
n=0

xn

2n(n+ 1)2
.

solution

Absolute convergence theorem:

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

2n+1(n+ 2)2
× 2n(n+ 1)2

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣x(n+ 1)2

2(n+ 2)2

∣∣∣∣
=

|x|
2

· lim
n→∞

(
n+ 1

n+ 2

)2

=
|2|
2

· lim
n→∞

(
1 + 1

n

1 + 2
n

)2

︸ ︷︷ ︸
=1

=
|x|
2
.

The series is absolutely convergent for L = 1
2
|x| < 1, or |x| < 2. That is, the series

converges for −2 < x < 2. When x = ±2, the ratio test fails since 1
2
|x| = 1. We

must perform separate checks of the series for convergence at these endpoints.

At x = 2: ∑ 2n

2n(n+ 1)2
=
∑ 1

(n+ 1)2
<
∑ 1

n2
since n+ 1 > n,

which is convergent by the comparison test with the convergent p-series.

At x = −2: ∑ (−2)n

2n(n+ 1)2
=
∑ (−1)n

(n+ 1)2
,
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which is convergent by the alternating series test, since

lim
n→∞

1

(n+ 1)2
= 0 and

1

(n+ 2)2︸ ︷︷ ︸
= an+1

<
1

(n+ 1)2︸ ︷︷ ︸
= an

for n ≥ 1.

Hence, the interval of convergence is a closed interval [−2, 2]. The radius of conver-

gence, R = 2. The series diverges if |x| > 2 (for x > 2 and x < −2).

EXAMPLE

Find the interval of convergence for
∞∑
n=0

xn

n!
.

solution

Absolute convergence theorem:

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
× n!

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ xn · x · n!
(n+ 1)n! · xn

∣∣∣∣
= lim

n→∞

∣∣∣ x

n+ 1

∣∣∣
= |x| · lim

n→∞

(
1

n+ 1

)
︸ ︷︷ ︸

=0

= 0.

Since L = 0 < 1, this series converges for all x values. Hence, the interval of

convergence is (−∞,∞), and the radius of convergence, R = ∞.

EXAMPLE

Find the interval of convergence for
∞∑
n=0

(x− 5)n

n 3n
.

solution

Absolute convergence theorem:∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣ (x− 5)n+1

(n+ 1)3n+1
× n · 3n

(x− 5)n

∣∣∣∣
= lim

n→∞

∣∣∣∣(x− 5)n

3(n+ 1)

∣∣∣∣
=

|x− 5|
3

· lim
n→∞

(
n

n+ 1

)
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=
|x− 5|

3
· lim
n→∞

(
1

1 + 1
n

)
︸ ︷︷ ︸

=1

=
|x− 5|

3
.

The series converges absolutely if 1
3
|x− 5| < 1, that is, 2 < x < 8.

At x = 2: ∑ (x− 5)n

n3n
=
∑ (−3)n

n3n
=
∑ (−1)n

n
,

which is a convergent series by the alternating series test, since

lim
n→∞

1

n
= 0 and

1

n+ 1
<

1

n
for n ≥ 1,

monotonically decreasing to zero.

At x = 8: ∑ (x− 5)n

n 3n
=
∑ 3n

n 3n
=
∑ 1

n
,

which is the divergent harmonic series.

Hence, the interval of convergence is [2, 8), and the radis of convergence is 3. The

given series diverges for x < 2 and x ≥ 8.

EXAMPLE

Find the interval of convergence for
∞∑
n=0

n!(x+ 10)n.

solution

Absolute convergence theorem:

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)! (x+ 10)n+1

n! (x+ 10)n

∣∣∣∣
= lim

n→∞

∣∣(n+ 1)(x+ 10)
∣∣

= |x+ 10| · lim
n→∞

(n+ 1)

=

∞ for x ̸= −10

0 for x = −10
.

The series diverges for all real numbers x, except for x = −10. At x = −10, we

obtain a convergent series consisting of all zeros. The radius of convergence is zero.
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3 Differentiation and Integration of Power Series

For each x in its interval of convergence, a power series
∑

cnx
n converges to a single

number. Thus, a power series defines or represents a function f with domain the interval

of convergence,

f(x) =
∞∑
n=0

cnx
n

= c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · · .

3.1 Differentiation of a Power Series

If f(x) =
∑

cnx
n converges on an interval (−r, r), then f(x) is continuous and differen-

tiable for |x| < r:

f ′(x) =
d

dx

∞∑
n=0

cnx
n

=
∞∑
n=0

d

dx

(
cn x

n
)

=
∞∑
n=1

ncn x
n−1.

Note that the latter series starts at n = 1 since
d

dx
c0 = 0. A power series can be

differentiated term-by-term:

f ′(x) =
d

dx
c0 +

d

dx
c1x+

d

dx
c2x

2 +
d

dx
c3x

3 + · · ·+ d

dx
cnx

n + · · ·

= c1 + 2c2x+ 3c3x
2 + · · ·+ ncnx

n−1 + · · ·

=
∞∑
n=1

ncnx
n−1.

The radius of convergence of this series is the same as that of
∑

cnx
n. Similarly,

f ′′(x) =
d

dx
f ′(x)

=
∞∑
n=2

n(n− 1)cn x
n−2

= 2c2 + 3 · 2c3x+ · · ·+ n(n− 1)cnx
n−2 + · · ·

=
∞∑
n=2

n(n− 1) cnx
n−2 (now n starts from 2).

It follows that a function represented by a power series for |x| < r possesses derivatives

of all orders in the interval.
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3.2 Integration of a Power Series

Just as a power series can be differentiated term-by-term within its interval of convergence,

it can also be integrated term-by-term:∫
f(x)dx =

∫ ∞∑
n=0

cnx
ndx

=

∫ (
c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · ·

)
dx

=
(
c0x+

c1
2
x2 +

c2
3
x3 + · · ·+ cn

n+ 1
xn+1 + · · ·

)
+ C

=
∞∑
n=0

cn
n+ 1

xn+1 + C,

where C is an integration constant. If f(x) =
∑

cnx
n converges to an interval (−r, r),

then ∫
f(x)dx =

∫ ∞∑
n=0

cnx
ndx

=
∞∑
n=0

∫
cnx

ndx

=
∞∑
n=0

cn
n+ 1

xn+1 + C.

The radius of convergence will be the same as that of
∑

cnx
n.

EXAMPLE

Find a power series representation for ln(1+x) for |x| < 1, and approximate ln(1.2)

to four decimal places.

solution

The power series for
1

1 + t
is given by

1

1 + t
= 1− t+ t2 − t3 + · · ·+ (−1)ntn + · · ·

=
∞∑
n=0

(−1)ntn for |t| < 1.

For |t| < 1:

x∫
0

1

1 + t
dt =

x∫
0

dt−
x∫

0

t dt+

x∫
0

t2 dt− · · ·+ (−1)n
x∫

0

tn dt+ · · ·
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=

[
t

]t=x

t=0

−
[
t2

2

]t=x

t=0

+

[
t3

3

]t=x

t=0

− · · ·+ (−1)n
[
tn+1

n+ 1

]t=x

t=0

= x− x2

2
+

x3

3
− · · ·+ (−1)n

xn+1

n+ 1
+ · · · for |x| < 1.

Also,

x∫
0

1

1 + t
dt =

[
ln(1 + t)

]t=x

t=0

= ln(1 + x)− ln(1)

= ln(1 + x).

Hence,

ln(1 + x) = x− x2

2
+

x3

3
− · · ·+ (−1)n

xn+1

n+ 1
+ · · ·

=
∞∑
n=0

(−1)n

n+ 1
xn+1 for |x| < 1.

Substituting x = 0.2 (valid since x = 0.2 satisfy |x| < 1) in the above series provides

ln(1.2) = 0.2− (0.2)2

2
+

(0.2)3

3
− (0.2)4

4
+

(0.2)5

5
− (0.2)6

6
+ · · ·

≈ 0.1823.

This is an alternating series. If the sum of the series is denoted by L, we know from

the theory for alternating series that∣∣Sn − L
∣∣ ≤ an+1.

The above answer of 0.1823 is accurate to four decimal places, since for the fifth

partial sum, ∣∣S5 − L
∣∣ ≤ a6 = 1.067

(
10−5

)
< 5
(
10−5

)
.

4 Taylor Series

For a power series representing a function f(x) on |x− a| < r,

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · ·

=
∞∑
n=0

cn(x− a)n,
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there is a relationship between the coefficients cn and the derivatives of f(x). That is,

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + · · · ,

f ′′(x) = 2c2 + 3 · 2c3(x− a) + 4 · 3c4(x− a)2 + · · · ,

f ′′′(x) = 3 · 2 · 1c3 + 4 · 3 · 2c4(x− a) + · · · ,

and so on. Evaluating the above series at x = a gives

f(a) = c0,

f ′(a) = 1 · c1,

f ′′(a) = 2 · 1 · c2 = 2! c2,

f ′′′(a) = 3 · 2 · 1 · c3 = 3! c3,

respectively. In general, f (n)(a) = n! cn, or

cn =
f (n)(a)

n!
for n ≥ 0

and

f(x) =
∞∑
n=0

cn(x− a)n =
∞∑
n=0

f (n)(a)

n!
(x− a)n for |x− a| < r.

When n = 0, f (0)(a) = f(a) and 0! = 1. This series is called the Taylor series for f(x)

at x = a (named in honor of the English mathematician Brook Taylor (1685–1731), who

published this result in 1715).

4.1 Maclaurin Series

A special case of a Taylor series when a = 0,

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

is called the Maclaurin series for f(x) (named after the Scottish mathematician, and

former student of Isaac Newton, Colin Maclaurin (1698–1746)).
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EXAMPLE

Find the Taylor series expansion for ln x about x = 1.

solution

The derivatives of f(x) = ln(x) are

f(x) = ln x,

f ′(x) =
1

x
,

f ′′(x) =
−1

x2
,

f ′′′(x) =
2!

x3
and so on,

f (n)(x) = (−1)n−1 (n− 1)!

xn
.

Here a = 1, we have after inserting x = 1 into the above derivatives,

f(1) = 0,

f ′(1) = 1,

f ′′(1) = −1,

f ′′′(1) = 2!, and so on,

f (n)(1) = (−1)n−1(n− 1)!.

Thus, the Taylor series for lnx is

lnx =
∞∑
n=0

f (n)(a)

n!
(x− a)n

=
∞∑
n=0

f (n)(1)

n!
(x− 1)n

= f(1) +
f ′(1)

1!
(x− 1)1 +

f ′′(1)

2!
(x− 1)2 +

f ′′′(1)

3!
(x− 1)3 + · · ·

= 0 +
1

1!
(x− 1) +

−1

2!
(x− 1)2 +

2

3!
(x− 1)3 + · · ·

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 + · · ·

=
∞∑
n=1

(−1)n−1

n
(x− 1)n.

Absolute convergence theorem:

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣(−1)n(x− 1)n+1

n+ 1
× n

(−1)n−1(x− 1)n

∣∣∣∣
= lim

n→∞

∣∣∣∣−n(x− 1)

n+ 1

∣∣∣∣



12 Power Series

= |x− 1| · lim
n→∞

∣∣∣∣ 1

1 + 1
n

∣∣∣∣
= |x− 1|.

The series converges when |x− 1| < 1, (i.e. for 0 < x < 2).

For the endpoints, at x = 0, we have

∞∑
n=1

(−1)n−1

n
(−1)n =

∞∑
n=1

(−1)2n (−1)−1

n

= −
∞∑
n=1

1

n
,

which is a divergent harmonic series. At x = 2, we have

∞∑
n=1

(−1)n−1

n
(1)n = −

∞∑
n=1

(−1)n

n
,

which is a convergent series by the alternating series test, since

lim
n→∞

1

n
= 0 and

1

n+ 1
<

1

n
for all n ≥ 1.

Hence, the Taylor series for lnx converges for 0 < x ≤ 2, and R = 1.

4.2 Taylor’s Theorem

This theorem also known as the Generalised Mean Value Theorem. Let f(x) be a function

such that f (n+1)(x) exists for |x− a| < r, then

f(x) = Pn(x) +Rn(x),

where

Pn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

is called the nth degree Taylor polynomial of f(x) at x = a (note that Taylor polynomials

do not exist for every function), and

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

where a < c < x, is called the Lagrange form of the remainder, or error, involved in

approximating f(x) by Pn(x) (theory due to the French mathematician, Joseph Louis

Lagrange (1736–1813)).
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The series expansion for f(x) will only be valid for those values of x for which Rn → 0 as

n → ∞; that is, for x values which the power series converges. Hence,

Pn(x) = f(x)−Rn(x),

and so

lim
n→∞

Pn(x) = lim
n→∞

f(x)− lim
n→∞

Rn(x).

If Rn(x) → 0 as n → ∞, then the sequence of partial sums converges to lim
n→∞

f(x) = f(x).

EXAMPLE

Represent f(x) = cosx by a Maclaurin series.

solution

For Maclaurin series, a = 0:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

=
∞∑
n=0

f (n)(0)

n!
xn

= f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ · · · .

For f(x) = cos x, we have

f(x) = cosx,

f ′(x) = − sinx,

f ′′(x) = − cos,

f ′′′(x) = sinx, and so on.

Thus, for x = 0,

f(0) = 1,

f ′(0) = 0,

f ′′(0) = −1,

f ′′′(0) = 0, and so on.

Hence,

f(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

=
∞∑
n=0

(−1)n

(2n)!
x2n.

This series contains even powers of x, since cos x is an even function.
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Absolute convergence test:

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1 x2n+2

(2n+ 2)!
× (2n)!

(−1)n x2n

∣∣∣∣
= lim

n→∞

∣∣∣∣ −x2

(2n+ 2)(2n+ 1)

∣∣∣∣
=

x2

2
· lim
n→∞

∣∣∣∣ −1

(n+ 1)(2n+ 1)

∣∣∣∣︸ ︷︷ ︸
=0

= 0.

Hence, the series converges absolutely for all real x values.

To show that cos x is represented by the series, we must show

lim
n→∞

Rn(x) = 0.

The derivatives of f(x) satisfy

∣∣f (n+1)(x)
∣∣ =

|sin x| for n even

|cos x| for n odd
.

In either case,
∣∣f (n+1)(c)

∣∣ ≤ 1 for any real number c, and so∣∣Rn(x)
∣∣ = ∣∣f (n+1)(c)

∣∣
(n+ 1)!

|x|n+1

≤ |x|n+1

(n+ 1)!
.

For any fixed, but arbitrary choice of x,

lim
n→∞

|x|n+1

(n+ 1)!
= 0.

Thus, lim
n→∞

∣∣Rn(x)
∣∣ = 0, implies that lim

n→∞
Rn(x) = 0. Therefore,

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

(2n)!
x2n + · · ·

is a valid representation of cosx.

note

Some important Maclaurin series:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
for all x,

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)n

(2n)!
x2n for all x,
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sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 for all x,

coshx = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · · =

∞∑
n=0

x2n

(2n)!
for all x,

sinhx = x+
x3

3!
+

x5

5!
+

x7

7!
+ · · · =

∞∑
n=0

x2n+1

(2n+ 1)!
for all x,

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
n=0

(−1)n

(n+ 1)
xn+1 for x ∈ (−1, 1].

4.3 Approximation with Taylor Polynomials

When the value of x is close to the number a (x ≈ a), the Taylor polynomial Pn(x) of

a function f(x) at x = a can be used to approximate the functional value of f(x). The

error in this approximation is ∣∣f(x)− Pn(x)
∣∣ = ∣∣Rn(x)

∣∣.
EXAMPLE

Approximate e−0.2 by P3(x), and determine the accuracy of the approximation.

solution

Because the value of x = −0.2 is close to x = 0, we use the Taylor polynomial P3(x)

of f(x) = ex at a = 0. Since f(x) = f ′(x) = f ′′(x) = f ′′′(x) = ex, we have

P3(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

= 1 + x+
x2

2
+

x3

6
.

Then,

P3(−0.2) = 1 + (−0.2) +
(−0.2)2

2
+

(−0.2)3

3

≈ 0.81867.

Consequently, e−0.2 ≈ 0.81867. Furthermore,∣∣R3(x)
∣∣ = ∣∣f (4)(c)

∣∣
4!

· |x|4

=
ec

4!
· |x|4

<
x4

24
,
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and since −0.2 < c < a, ec < 1. Thus,

∣∣R3(−0.2)
∣∣ < (−0.2)4

24
≈ 10−4

implies that e−0.2 ≈ 0.819 is accurate to three decimal places.

5 Binomial Series

From basic mathematics, we know that

(1 + x)2 = 1 + 2x+ x2 ;

(1 + x)3 = 1 + 3x+ 3x2 + x3.

In general, if α is a non-negative integer, we can apply the Binomial Theorem to expand

(1 + x)α as

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 +

α(α− 1)(α− 2)(α− 3)

4!
x4

+ · · ·+ α(α− 1) · · · (α− n+ 1)

n!
xn + · · · .

The expansion of (1 + x)α into the above form is called binomial series. Applying the

absolute ratio test provides

an =
α(α− 1)(α− 2) · · · (α− n+ 1)

n!
xn,

an+1 =
α(α− 1)(α− 2) · · · (α− n+ 1)(α− n)

(n+ 1)!
xn+1,

⇒
∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣∣α(α− 1)(α− 2) · · · (α− n+ 1)(α− n)xn+1 · n!
(n+ 1)! · α(α− 1)(α− 2) · · · (α− n+ 1)xn

∣∣∣∣
= lim

n→∞

∣∣∣∣(α− n)x

n+ 1

∣∣∣∣
= |x| · lim

n→∞

∣∣∣∣α− n

n+ 1

∣∣∣∣
= |x| · lim

n→∞

∣∣∣∣α/n− 1

1 + 1/n

∣∣∣∣
= |x| · |−1|

= |x|.
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Thus, for |x| < 1, that is on the interval (−1, 1), the binomial series defines an infinitely

differentiable function f(x). Hence, we have the binomial series (Maclaurin series for

(1 + x)α):

(1 + x)α =
∞∑
n=0

cnx
n

= 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 +

α(α− 1)(α− 2)(α− 3)

4!
x4 · · ·

+
α(α− 1) · · · (α− n+ 1)

n!
xn + · · · for |x| < 1.

EXAMPLE

Find a power series representation for
√
1 + x.

solution

For |x| < 1, we have

√
1 + x = (1 + x)α (here α = 1

2
)

= 1 +
1

2
x+

1
2

(
1
2
− 1
)

2!
x2 +

1
2

(
1
2
− 1
)(

1
2
− 2
)

3!
x3 +

1
2

(
1
2
− 1
)(

1
2
− 2
)(

1
2
− 3
)

4!
x4

+ · · ·+
1
2

(
1
2
− 1
)
· · ·
(
1
2
− n+ 1

)
n!

xn + · · ·

= 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − · · · .

EXAMPLE

In Einstein’s theory of relativity, the mass of a particle moving at a velocity v,

relative to an observer is given by

m =
m0√

1− v2/c2
,

where m0 is the rest mass and c is the speed of light. Many of the results from

classical physics do not hold for particles, such as electrons, which may move close

to the speed of light. Kinetic energy is no longer K = 1
2
m0v

2, but

K =
(
m−m0

)
c2.

If we identify α = −1/2 and x = −v2/c2 in m =
m0√

1− v2/c2
, we have |x| < 1 since

no particle can surpass the speed of light, i.e. v < c. Hence, K can be written as

K =

(
m0√

1− v2/c2
−m0

)
c2
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= m0c
2
(
(1 + x)−1/2 − 1

)
with x = −v2/c2

= m0c
2

((
1− 1

2
x+

3

8
x2 − 5

16
x3 + · · ·

)
− 1

)

= m0c
2

(
v2

2c2
+

3v4

8c4
+

5v6

6c6
+ · · ·

)
.

In the case where v ≪ c, terms beyond the first in the series are negligible. This

leads to the well-known result

K ≈ m0c
2 · v2

2c2

=
1

2
m0v

2.

6 Manipulation of Power Series

6.1 Addition and Subtraction of Power series

Power series can be added or subtracted, term-by-term for those values of x for which

both series converge. Suppose

f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · for |x| < r1,

and

g(x) =
∞∑
n=0

dnx
n = d0 + d1x+ d2x

2 + · · ·+ dnx
n + · · · for |x| < r2,

where r1 and r2 are the corresponding radius convergence, then

f(x)± g(x) =
∞∑
n=0

cnx
n ±

∞∑
n=0

dnx
n

=
∞∑
n=0

(
cn ± dn

)
xn

= (c0 + d0)± (c1 + d1)x± (c2 + d2)x
2 ± · · · ± (cn + dn)x

n + · · · for |x| < min(r1, r2).

Also, if k is a constant, then

kf(x) =
∞∑
n=0

kcnx
n

= kc0 + kc1x+ kc2x
2 + · · ·+ kcnx

n + · · · for |x| < r1.
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EXAMPLE

Find a power series representation for cosh θ. Hence, obtain estimate for cosh(1/2).

solution

Using the relation cosh θ = 1
2

(
eθ + e−θ

)
, and the series expansion for ex,

ex =
∞∑
n=0

xn

n!

= 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · for all x,

we have

cosh θ =
1

2

(
eθ − e−θ

)
=

1

2

((
1 + θ +

θ2

2!
+

θ3

3!
+

θ4

4!
+ · · ·

)
+

(
1− θ +

θ2

2!
− θ3

3!
+

θ4

4!
+ · · ·

))

= 1 +
θ2

2!
+

θ4

4!
+

θ6

6!
+ · · · for all θ

=
∞∑
n=0

θ2n

(2n)!
.

Alternative method:

cosh θ =
1

2

(
eθ − e−θ

)
=

1

2

(
∞∑
n=0

θn

n!
+

∞∑
n=0

(−θ)n

n!

)

=
∞∑
n=0

θn + (−θ)n

2n!

=
∞∑
n=0

(
1 + (−1)n

)
θn

2n!

=
∞∑
n=0

θn

n!
for even n, since 1 + (−1)n =

0 for odd n

2 for even n

=
∞∑
n=0

θ2n

(2n)!
.

For θ = 1/2:

cosh(1/2) =
∞∑
n=0

(1/2)2n

(2n)!

= 1 +
(1/2)2

2!
+

(1/2)4

4!
+

(1/2)6

6!
+ · · ·

≈ 1.1276 .
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6.2 Composition of Power Series

Suppose

f(x) =
∞∑
n=0

cnx
n

= c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · · for |x| < r1.

The power series for f
(
g(x)

)
can be obtained from

f
(
g(x)

)
=

∞∑
n=0

cn
(
g(x)

)n
= c0 + c1g(x) + c2

(
g(x)

)2
+ c3

(
g(x)

)3
+ · · ·+ cn

(
g(x)

)n
+ · · · for |g(x)| < r1,

and follow by substituting the power series expansion for g(x) into this expression.

EXAMPLE

Using the standard series from the Concise Collection of Formulae, determine the

first few terms of the power series for ex
2/2.

solution

Using the power series expansion for et :

et =
∞∑
n=0

tn

n!

= 1 + t+
t2

2!
+

t3

3!
+

t4

4!
+ · · · for all t,

we have upon substituting t = 1
2
x2,

ex
2/2 = 1 +

(
1
2
x2
)
+

(
1
2
x2
)2

2!
+

(
1
2
x2
)3

3!
+

(
1
2
x2
)4

4!
+ · · ·

= 1 +
x2

2
+

x4

8
+

x6

48
+

x8

384
+ · · · for

∣∣1
2
x2
∣∣ < 1 or |x| <

√
2 .

6.3 Multiplication of Power Series

Suppose

f(x) =
∞∑
n=0

cnx
n

= c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · · for |x| < r1,
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and

g(x) =
∞∑
n=0

dnx
n

= d0 + d1x+ d2x
2 + d3x

3 + · · ·+ dnx
n + · · · for |x| < r2,

then

f(x)× g(x) =
(
c0 + c1x+ c2x

2 + c3x
3 + · · ·

)(
d0 + d1x+ d2x

2 + d3x
3 + · · ·

)
= c0d0 +

(
c0d1 + c1d0

)
x+

(
c2d0 + c1d1 + c0d2

)
x2

+
(
c0d3 + c1d2 + c2d1 + c3d0

)
x3 + · · · for |x| < min(r1, r2).

EXAMPLE

Using the standard series from the Concise Collection of Formulae, determine the

first few terms of the power series for ex cos x.

solution

Using the power series expansions for ex and cos x, we have

ex cos x =

(
1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)(
1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
= 1 + x(1) + x2

(
−1

2
+ 1

2

)
+ x3

(
−1

2
+ 1

6

)
+ x4

(
1
24

− 1
4
+ 1

24

)
+ · · ·

= 1 + x− x3

3
− x4

6
+ · · · for all x.

The series expansion for ex cos x is valid for all x, since both the series expansions

for ex and cosx are valid for all x.

6.4 Division of Power Series

Suppose

f(x) =
∞∑
n=0

cnx
n

= c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · · for |x| < r1,

and

g(x) =
∞∑
n=0

dnx
n

= d0 + d1x+ d2x
2 + d3x

3 + · · ·+ dnx
n + · · · for |x| < r2,
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then the quotient,

f(x)

g(x)
=

c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · ·

d0 + d1x+ d2x2 + d3x3 + · · ·+ dnxn + · · ·
= q0 + q1x+ q2x

2 + q3x
3 + · · ·+ qnx

n + · · ·

provided c0 ̸= 0 and d0 ̸= 0. The coefficients (q0, q1, q2, q3, . . .) may be obtained by the

procedure of long division, or by writing

c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · ·

=
(
q0 + q1x+ q2x

2 + q3x
3 + · · ·+ qnx

n + · · ·
)

×
(
d0 + d1x+ d2x

2 + d3x
3 + · · ·+ dnx

n + · · ·
)
,

and expanding the right-hand-side and equating coefficients of like terms. Note that the

resulting power series may not converge for |x| < min(r1, r2) as there is an added compli-

cation, and problems may occur whenever the denominator is zero.

EXAMPLE

Using the standard series from the Concise Collection of Formulae, determine the

first few terms of the power series for tanh x. Hence, evaluate

∫ 1

0

tanhx dx.

solution

Using the power series expansions for sinhx and cosh x, we have

sinhx = x+
x3

3!
+

x5

5!
+

x7

7!
+ · · · for all x,

coshx = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · · for all x,

⇒ tanh x =
sinhx

coshx

=
x+ x3

3!
+ x5

5!
+ x7

7!
+ · · ·

1 + x2

2!
+ x4

4!
+ x6

6!
+ · · ·

= q0 + q1x+ q2x
2 + q3x

3 + · · ·+ qnx
n + · · · .

This requires

x+
x3

6
+

x5

120
+

x7

5040
+ · · ·

=

(
q0 + q1x+ q2x

2 + q3x
3 + · · ·+ qnx

n + · · ·
)
×
(
1 +

x2

2
+

x4

24
+

x6

720
+ · · ·

)
= q0 + q1x+

(
1
2
q0 + q2

)
x2 +

(
1
2
q1 + q3

)
x3 +

(
1
24
q0 +

1
2
q2 + q4

)
x4

+
(

1
24
q1 +

1
2
q3 + q5

)
x5 +

(
1

720
q0 +

1
24
q2 +

1
2
q4 + q6

)
x6

+
(

1
720

q1 +
1
24
q3 +

1
2
q5 + q7

)
x7 + · · ·
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Equating the coefficients of x, we have

q0 = 0,

q1 = 1,

q2 = −1
2
q0 = 0,

q3 =
1
6
− 1

2
q1 = −1

3
,

q4 = − 1
24
q0 − 1

2
q2 = 0,

q5 =
1

120
− 1

24
q1 − 1

2
q3 =

2
15
,

q6 = − 1
720

q0 − 1
24
q2 − 1

2
q4 = 0,

q7 =
1

5040
− 1

720
q1 − 1

24
q3 − 1

2
q5 = − 17

315
.

Hence,

tanh x = x− x3

3
+

2x5

15
− 17x7

315
+ · · · for all x.

Integrating tanhx,∫ 1

0

tanh x dx =

∫ 1

0

(
x− x3

3
+

2x5

15
− 17x7

315
+ · · ·

)
dx

=

[
x2

2
− x4

12
+

x6

45
x6 − 17x8

2520

]x=1

x=0

=
121

280

≈ 0.4321.

Exact Answer: ∫ 1

0

tanhx dx =

∫ 1

0

sinhx

coshx
dx

=
[
ln|coshx|

]x=1

x=0

= ln
(
cosh 1

)
− ln

(
cosh 0

)
= ln

(
cosh 1

)
− ln(1) since cosh 0 = 1

≈ 0.4338.

The relative difference between the approximate and exact answers is 0.378.
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7 Review Questions

[1] Determine the Taylor polynomial of degree three for f(x) =
√
x at x = 4.

Hence, estimate
√
4.2.

[2] Suppose f(x) is a sufficiently well-behaved function, and

Pn(x) = a0 + a1(x− a) + a2(x− a)2 + a3(x− a)3 + · · ·+ an(x− a)n

is a polynomial which satisfies

Pn(a) = f(a), P ′
n(a) = f ′(a), P ′′

n (a) = f ′′(a), . . . , P (n)
n = f (n)(a).

Show that

a0 = f(a), a1 = f ′(a), a2 =
f ′′(a)

2!
, a3 =

f (3)(a)

3!
, · · · , an =

f (n)(a)

n!
.

[3] Obtain the following Maclaurin Series:

(a) arctan x = x− x3

3
+

x5

5
− x7

7
+ · · · ;

(b) ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · ;

(c) log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · .

[4] Determine the Taylor series for f(x) = cosx about the point x = π/3.

[5] Obtain a Taylor series for tan x in the following form,

tanx = a0 + a1
(
x− π/4

)
+ a2

(
x− π/4

)2
+ · · · .

[6] Determine the radius of convergence R for each of the following power series:

(a)
∑ nxn

2n+1
;

(b)
∑ (x− 1)n+1

n 3n−1
;

(c)
∑

(−1)n
xn

√
n+ 1

;

(d)
∑ 2n−1xn

n3
;

(e)
∑ (n!)2

(2n)!
xn ;

(f)
∑

(−1)n
(
n+ 1

n+ 2

)
xn.



Lecture Notes – MATH2118 Further Engineering Mathematics C 25

[7] (a) Use the geometric series
∞∑
n=0

(
−x2

)n
to obtain the expansion

arctanx = x− x3

3
+

x5

5
− · · ·+ · · · for |x| < 1.

(b) Use (a) to show that

lim
n→∞

arctanx

x
= 1.

(c) Show that ∫ x

0

arctan t

t
dt = x− x3

32
+

x5

52
− x7

72
+ · · · .

[8] Assuming that the power series for sin x and cosx hold for all complex numbers,

show that

sin(iθ) = i sinh θ and cos(iθ) = cosh θ, where i =
√
−1 .

[9] Using the Binomial Theorem, determine power series expansions and radius of con-

vergence for each of the following functions:

(a)
√
1− x ;

(b) (1 + 2x)−3 ;

(c)
1

3
√
1 + 3x3

;

(d)
(
1 + 2x2

)−2
.

[10] Show that
7

3x2 + 5x− 2
=

3

3x− 1
− 1

x+ 2
.

Hence, obtain a power series expansion for
7

3x2 + 5x− 2
using the binomial series.

[11] Use the power series expansion for log(1 + x) to find a power series expansion for

log

(
1 + x

1− x

)
.

Hence, obtain an estimate for log 3.

[12] Using the standard series from the Concise Collection of Formulae, determine the

first few terms of the power series for

(a) exp
(
−1

2
x2
)
;

(b) ex cosx ;
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(c) log
(
1 + ex

)
.

[13] Use the power series for log(1 + x) to show that

(
log(1 + x)

)2
= x2 − x3 +

11x4

12
+ · · · if |x| < 1.

[14] Use the first four terms of appropriate power series to obtain estimates of

(a)

∫ 1

0

dx√
1− 1

4
x4

;

(b)

∫ 1/10

0

ex − 1

x
dx ;

(c)

∫ 1/2

0

√
1 +

1

2
x3 dx ;

(d)

∫ 1/5

0

sinx

x
dx.

[15] Using the binomial and exponential series, show that

e−x

√
1− 2x

= 1 + x2 +
4

3
x3 + · · · if |x| < 1/2.

Hence, obtain an approximate value for

∫ 1/5

0

e−x

√
1− 2x

dx.

[16] Use the series,

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · for all x,

and

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · · if |x| < 1,

to find the first four terms of the power series for

√
1− x · cos x.

Hence, obtain an approximate value for∫ 1/10

0

√
1− x · cosx dx .
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8 Answers to Review Questions

[1] P3(x) = 2 +
1

4
(x− 4)− 1

64
(x− 4)2 +

1

512
(x− 4)3;

√
4.2 ≈ 2.0494.

[2] Not available.

[3] Not available.

[4] cos(π/3) ≈ 1

2
−

√
3

2

(
x− π/3

)
− 1

4

(
x− π/3

)2
+

√
3

2

(
x− π/3

)3 − · · ·+ · · ·

[5] a0 = 1, a1 = 2, a2 = 2.

[6] (a) R = 2

(b) R = 3

(c) R = 1

(d) R = 1/2

(e) R = 4

(f) R = 1

[7] Not available.

[8] Not available.

[9] (a) 1− x

2
− x2

8
− x3

16
− 5x4

128
− · · · ; R = 1.

(b) 1− 6x+ 24x2 − 80x3 + · · · − · · · ; R = 1/2.

(c) 1− x3 + 2x6 − 14x9

3
+ · · · − · · · ; R =

1
3
√
3
.

(d) 1− 4x2 + 12x4 − 32x6 + · · · − · · · ; R =
1√
2
.

[10] −
∞∑
n=0

(
3n+1 +

(−1)n

2n+1

)
xn = −7

2
− 35x

4
− 217x2

8
− · · · ; R = 1/3.

[11] log

(
1 + x

1− x

)
= 2

(
x+

x3

3
+

x5

5
+

x7

7
+

x9

9
+ · · ·

)
for |x| < 1;

log 3 ≈ 1.0981 using the first four terms.

[12] (a) 1− x2

2
+

x4

22 2!
− x6

23 3!
+ · · ·

(b) 1 + x− x3

3
− x4

6
+ · · ·

(c) log 2 +
x

2
+

x2

8
− x4

192
+ · · ·
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[13] Not available.

[14] (a) 1.0280

(b) 0.1026

(c) 0.50387 using the first three terms; truncation error less than 7.6
(
10−7

)
.

(d) 0.19956 using the first two terms; truncation error less than 5.3
(
10−7

)
.

[15] 0.2032

[16]
√
1− x · cos x ≈ 1− x

2
− 5x2

8
+

3x3

16
+ · · · ;∫ 1/10

0

√
1− x · cos x dx ≈ 0.0973.


